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Abstract

Modern animal behaviourists are able to collect vast
amounts of data from multiple sensors including cameras.
Sensor fusion however still remains a challenge given the
unique sensor types biologists use, and especially the un-
usual settings in which these sensors are deployed. Here,
we study thermal camera-LiDAR alignment for thermally
uniform, feature-deficient cave scenes. To approach these
conditions, we introduce the depth-map correspondence
(DMCP) algorithm for user-assisted alignment without ex-
plicit calibration objects. We quantify the accuracy of
DMCP’s alignment by evaluating a set of points known
to lie on cave walls and compare it with state of the art
methods. DMCP’s alignment shows a median of 9 cm er-
ror, while other methods show at least order of magnitude
higher median errors. DMCP thus sets an important base-
line result for this challenging sensor-fusion task.

1. Introduction

Animal behaviorists today are able to collect types of data
from multiple sensors such as thermal video and even Li-
DAR scans of the natural environment. Contextualising
the animal’s behaviour however requires bringing the multi-
sensor data to a common coordinate-system. Animals oc-
cupy a wide set of physical environments (aquatic, terres-
trial, subterranean), each of which constrain sensor perfor-
mance. However, state-of-the art methods to handle and
align sensor data are typically centred around rgb cameras
or human and industry environments (e.g. artificial and ur-
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Figure 1. Schematic showing the required raw data inputs and re-
sulting output from the depth map correspondence (DMCP) algo-
rithm. While designed for thermal camera pose estimation, DMCP
can work for any type of image-pointcloud or image-mesh sensor
data.

ban settings)[8] for thermal cameras. State-of-the-art meth-
ods may thus fail when used with unconventional data from
natural environments, necessitating the development of new
algorithms.

1.1. In situ research requires new fusion methods

Many echolocating bat species live in caves, and fly around
in groups before emerging to forage. The study of their
echolocation and flight patterns is of central interest to the
field of active-sensing and collective behaviour [1, 2]. The
Ushichka dataset [1] is a multi-sensor dataset with multi-
channel audio, multi-camera thermal video and LiDAR
scans of the Orlova Chuka cave system in Bulgaria. Each
of the sensors in Ushichka captures an important aspect of
the animals’ behaviour, but a contextual understanding is
achieved only by aligning the three sensors into a common
coordinate system.
To understand a bat’s flight decisions, its flight path with
respect to the cave’s walls needs to be known. Aligning



the LiDAR and the camera coordinate systems allows
this contextual understanding. Aligning 3D meshes and
thermal cameras is typically done with calibration objects
in the scene [15, 21]. The Ushichka scene however does
not contain calibration objects visible to both LiDAR and
thermal sensors. We thus need to make use of the naturally
available features in the data.

Methods using environmental features developed for visible
light camera and LiDAR alignment without calibration ob-
jects exist [17, 20]. However, alignment attempts based on
feature and photo-consistency based methods fail to provide
enough scene points necessary for alignment [11]. A main
reason for the failure of these methods on the Ushichka
dataset is likely the unique nature of the subterranean ther-
mal scenes, which exhibit extremely low contrast across the
scene. The cave system maintains a fairly stable temper-
ature of around 10◦C all year round, and shows little spa-
tial variation in temperature from one part to another (pers.
obs.). Also, the thermal scene is very self-similar. Rocks in
the scene are difficult to uniquely identify and smooth walls
sometimes dominate sizeable portions of the camera view,
resulting in features with low descriptive power.

1.2. Overcoming featureless scenes

We present the semi-automated Depth Map Correspon-
dence (DMCP) algorithm, developed to handle the image-
mesh alignment of feature deficient scenes such as those in
Ushichka’s thermal data (Fig. 1). Additionally, we compare
it with the results from state-of-the-art feature detectors pro-
vided by the software package hloc [23, 24]. DMCP con-
sists of the following steps:
1. The user chooses a view of the mesh interactively to ap-

proximately match the thermal image. A depth map of
the mesh is then generated from the viewpoint. A depth
map is image-like and thus eases comparison with the
thermal image.

2. The user annotates a minimum of 4 point-to-point cor-
respondences between the thermal image and the depth
map (Fig. 2). Each 2D point in the depth map corre-
sponds to a 3D point in the LiDAR scene.

3. The extrinsic pose of the camera in the LiDAR scene is
estimated from the user-annotated correspondences.

4. The transformation matrix that converts 3D points from
thermal camera world space to LiDAR space is calcu-
lated by passing points through camera space and solv-
ing the absolute orientation problem.

2. Methodology
2.1. The DMCP algorithm

Terminology Terminology and mathematical background
is generally used as defined in [10]. The extrinsic matrix

(a) Thermal image from second
camera for session on 2018-08-17.
Crosses and numbers refer to the
user annotated points.

(b) Depth map generated for anno-
tation. White points and numbers
refer to user annotated points.

Figure 2. Example image and depth map from Ushichka experi-
ment. White points indicate annotated pixels. A red x indicates the
reprojected depth map correspondence.

E of each camera has a corresponding pose matrix C as
its inverse. Objects in homogenous coordinates are denoted
with a hat (e.g Ê).

We call the coordinates the LiDAR mesh is expressed in
lidar world space. The pivot camera to be aligned is given
in its own associated space defined by its extrinsic matrix,
we call thermal space. The system referred to is denoted by
subscript.

Given a thermal image Ithermal captured by a camera
Pthermal = KthermalEthermal in thermal space, the task
is now to find a projective transformation M from thermal
to lidar space such that the coordinates of a 3D point A
in the two systems are related by the affine transforma-
tion Âworld = MÂthermal.

2.1.1 Point Annotation

A user first chooses a view point to approximately match the
captured thermal image Ithermal. From the selected view
point, we render a depth map Idm of the mesh with [19]
according to the chosen projection matrix Pdm. The pose
Cdm =

[
Rdm Tdm

]
of the virtual camera that captured

the depth map is saved. The user now annotates at least 4
corresponding points on Idm and Ithermal. We denote the
two corresponding sets of points by cpsdm and cpsthermal,
respectively.

Let a ∈ cpsdm be the pixel coordinates of one of the
corresponding points on Idm, then Idm(a) is the corre-
sponding depth. The respective point Acamera in the cam-
era space of the depth camera can then be computed by
Acamera = Idm(a) · K−1

dmâ, and further be transformed to
lidar space with

Aworld = CdmÂcamera = CdmIdm(a) ·K−1
dmâ. (1)

The transformed set of correspondences in lidar space is de-
noted by cpslidar. Thus, cpsthermal and cpslidar now rep-
resent correspondences from thermal camera pixel coordi-
nates to lidar space coordinates. Because correspondences
are annotated and originate from a feature deficient scene,



we assume their number to be close to the minimum num-
ber of 4 points necessary for the Sparse Camera Alignment
step. Figure 2 shows example annotations.

2.1.2 Sparse Camera Alignment

Suppose we have a thermal camera defined by its intrin-
sic camera matrix Kthermal and pinhole projection matrix
Pthermal = KthermalEthermal. Additionally, we assume
at least 4 corresponding points cpsthermal and cpslidar gen-
erated in the annotation step. Sparse Camera Alignment
is defined in two steps: 1) camera pose estimation and 2)
transformation estimation.

Camera Pose Estimation The position of the camera in
lidar space is estimated using image to lidar space corre-
spondences. The resulting task is known as the Perspective-
n-Point problem [7]. The lowest number of points re-
quired to estimate a camera pose is 4 points. To work
on only 4 points reliably, we build on an existing solu-
tion [14] of the Perspective-Three-Point Problem (P3P) im-
plemented in [5]. P3P requires exactly three correspon-
dences and gives up to 4 distinct valid solutions in the
form of extrinsic matrices Ei. The solutions are collected
for all combinations of three points in the correspondence
set. The fourth point is used to determine the correct so-
lution among the Ei. A point Aworld ∈ cpslidar can be
reprojected into the image via a′ = KthermalEiÂworld.
As every solution Ei is generated from 3 points, there is
at least one point in cpslidar, that is not used to gener-
ate a solution. Thus, the solution that generalizes best can
be selected as the solution where the total reprojection er-
ror er(i) =

∑
Aworld∈cpslidar

||KthermalEiÂworld − a|| is
minimized. Here, a ∈ cpsthermal is the point which corre-
sponds to the projection a′ of the current point Aworld for
which the term is evaluated.

The final estimated extrinsic matrix and the solution of
the camera pose estimation step is therefore

Elidar = Ei with i = argmin
i

er(i), (2)

representing the estimated pose with respect to lidar space.

Transformation Estimation In this step, the transfor-
mation that transforms points in thermal space to lidar
space is computed from the thermal camera Pthermal =
KthermalEthermal, the estimated lidar space camera
Plidar = KthermalElidar (note that Kthermal = Klidar

here) and the annotated lidar space points cpslidar.
First, each lidar space point Aworld ∈ cpslidar is trans-
formed and moved to thermal space

Athermal = CthermalElidarÂworld. (3)

This way, the coordinates of each lidar space point in ther-
mal space are known. The registering transformation can
now be defined by solving the absolute orientation problem.
Here, Umeyama’s method [27] as implemented in [5] is
used. The result is the estimated transformation M , which
computes

Aworld = MAthermal and (4)

Pworld = PthermalM
−1. (5)

Thus, M solves the pose estimation problem for all cam-
eras and points in thermal space. Alternatively, M could
also be computed directly using the inversion M =
CworldEthermal. We use Umeyama’s method in our im-
plementation since we found it leads to slightly more robust
results.

2.2. Ushichka computational experiments

The Ushichka dataset [1] consists of multiple nights of
multi-sensor data, capturing the flight behaviour of echolo-
cating bats in the same recording volume. On each night,
three uncooled thermal cameras were placed in similar lo-
cations in the cave across all nights. The DLT coefficients
of each camera were used to obtain the intrinsic and extrin-
sic camera parameters in thermal space. A high-resolution
LiDAR scan of the cave was performed on one night (≤ 6
mm resolution) [13]. The generated point cloud was down-
sampled to a centimetre level mesh in this paper for ease of
handling.

2.2.1 Feature matches alignment with ICP

To compare DMCP with state of the art, robust transfor-
mation estimates are obtained for each night using DMCP.
Poses from 5 repeated rounds of DMCP are averaged.
Ushichka thermal data was captured as video frames. Im-
ages for annotation on each night were generated by us-
ing the median value for each pixel along a time axis of
100 frames. The result was further processed by removing
horizontal and vertical fixed pattern noise using the fourier
transform. A result can be seen in Figure 2a.

We compare alignment from DMCP with alignment re-
sults from 5 other modern feature descriptors: hloc[23,
24], Disk[26], R2D2[22], SIFT[18], SOSNET[25] and
Superpoint[6]. Detected features get matched and matched
points projected into 3D using the calibrated camera matri-
ces from the Ushichka dataset. Using the DMCP results
as initial transformation, the reconstructed structure gets
aligned with the LIDAR mesh using ICP[4]. The results
are compared to the baseline provided by DMCP. That this
is a valid strategy will be confirmed in Section 3.1. While
small differences in the estimated transformation indicate
good performance or even slight improvement over DMCP,
large deviations indicate wrong estimations.



Method Median translation (m) 95 %ile interval (m)
DMCP (this paper) 0 (reference) 0 (reference)
Disk [26] 8.63 2.55 - 16.22
R2D2 [22] 10.59 4.43 - 20.49
SIFT [18] 16.04 1.30 - 52.40
SOSNET [25] 6.13 0.64 - 25.84
Superpoint [6] 6.70 0.57 - 1413.56

Table 1. Summary of spatial discrepancy in inferred camera pose
between DMCP and other methods using ICP. Here we only report
median translation of each ICP transformation.

2.2.2 Microphone and cave point alignment

To verify DMCP’s 3D alignment accuracy, we compare the
positions of microphones and other cave points after conver-
sion to the LiDAR coordinate system. Many microphones
in Ushichka were placed directly on the cave surface, and
visible on the thermal camera images. Thus, a perfect align-
ment of microphone and LiDAR mesh means the micro-
phone/cave points will lie perfectly on the mesh surface.
Alignment error is quantified by computing the distance to
the nearest-mesh point for each transformed microphone
and wall point. For comparison, we repeat the evaluation
for estimated transforms from Section 2.2.1.

3. Results

3.1. Microphone and cave point alignment

Ideal camera-LiDAR alignment should result in 0 dis-
tance between camera-triangulated points and nearest mesh
points. We observe a range of alignment distances for
DMCP (Figure 3) (median: 0.09m, 95%ile: 0.007− 2.5m,
N = 77 points). Other methods show much higher align-
ment errors, proving DMCP’s better baseline performance.
It is important to caution that a lower nearest-point distance
points to a good fit of camera triangulated points with the
mesh, and is only a proxy for reliable alignment.

3.2. Feature matches alignment with ICP

Table 1 shows the results of ICP alignment of recon-
structed feature matches. Large median translations of 6m
and upwards indicate significantly worse performance than
DMCP, especially as the estimated DMCP poses show a
median alignment error of 0.09m in Section 3.1 and were
seen to be correct from visual inspection.

In general, the experiment shows that the DMCP frame-
work empowers a user to register calibrated cameras to a
mesh, even in difficult scenes. Especially difficult images
that do not result in optimal transformations can be esti-
mated by trying again with more effort to find good corre-
spondences.

4. Discussion

Animal behaviourists often collect multi-sensor datasets in
unconventional natural settings. To aid in subterranean ther-
mal camera-LiDAR alignment, we developed the DMCP al-
gorithm. DMCP estimates camera pose using user-assisted
correspondences between thermal images and LiDAR depth
maps. We highlight the success of the method despite the
limited thermal camera resolution (640x512 pixels), chal-
lenging image conditions (2a), along with the low number
(4 points) of correspondences required from the user’s side.
Having aligned the thermal-camera and LiDAR sensors, we

Figure 3. Quantifying alignment error: distance between trans-
formed microphone and cave points and the nearest LiDAR mesh
point. Y-axis in log10 scale. Box-plot represents 25,50,75 per-
centiles. DMCP currently outperforms other methods by an order
of magnitude.

Figure 4. Multiple overlaid bat flight trajectories aligned to the
cave LiDAR scan using DMCP (2018-08-17 session). The visual-
isation shows the view from above, and suggests bats follow walls
when flying in caves.



see the power of DMCP with the bat flight trajectories in
the cave setting in Figure 4. Preliminary observations al-
ready show evidence for wall-following, which would not
have been apparent with only flight trajectories in the cam-
era coordinate system.

DMCP is a user-assisted algorithm, poor input corre-
spondences will result in a poor pose estimation. In particu-
lar, point annotations made close to edges in the depth map
can tip the balance between a good and bad pose estimation.
The intrinsic and extrinsic parameters of the experimental
cameras are assumed to be known, by calibrating them into
a common coordinate system. Errors in camera parame-
ter estimation (depending on the calibration workflow used)
will therefore influence DMCP’s accuracy as well.

Even though DMCP is developed to solve thermal
camera-LiDAR alignment, we stress that it is generalis-
able to any kind of camera-pointcloud or camera-mesh data.
Other potential uses of DMCP are in pose estimation in
meshes/point-clouds generated from 3D scanning devices
or structure-from-motion type workflows. Thermal-LiDAR
data and code used in this paper are available here [3, 12].

5. Conclusion
The current formulation of DMCP estimates transforms
from single cameras independently. Future work could gen-
eralize the algorithm to multiple cameras. This could be
achieved by estimating a consensus transform using point
correspondences from all cameras together. The combined
approach transforms may result in a more robust transform
estimate by removing outliers that do not satisfy the rela-
tive camera pose constraint. Automation of two portions of
the workflow require further development: 1) generation of
corresponding points, and 2) generation of depth maps. To
automatically find corresponding points, future work could
look into feature detectors optimised from thermal images,
such as phase-congruency [9, 11, 16], or machine learning
approaches for lidar-depth-map feature descriptors. Instead
of a single depth map used to obtain corresponding points,
an automated method could sample multiple views of the
mesh with varying numbers of corresponding points from
each depth map annotated by a thermal-to-depth feature de-
scriptor. The corresponding points across depth maps could
then be pooled to obtain a robust pose estimate. We share
the code of DMCP and relevant raw data to encourage fur-
ther research in these directions.

We found it surprising that there does not seem to be an
automatic solution to successfully align a set of calibrated
thermal cameras to a mesh. Finding correspondences be-
tween thermal images to reliably obtain 3D points on the
mesh is extremely challenging in scenes with low tempera-
ture variation. DMCP sets an important baseline for future
work on a fully automated sensor-fusion pipeline in feature-
deficient scenes.
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